Velox开发环境配置踩坑记录
Velox是Facebook开源的数据库执行引擎,这几天起了兴趣准备试下,中文搜索引擎也没搜出环境配置的教程,于是就写了这篇记录下踩坑情况
环境
WSL2(Docker)
32GB Memory(分配给Docker 24GB)
Ryzen5 4600H(6核12线程,分配给Docker 8个线程)
配置
有了前面LLVM和MLIR的配置经验,那就不多哔哔,直接上Docker
docker pull ghcr.io/facebookincubator/velox-dev:ubuntu-22.04
(”镜像怎么加速“这个问题不属于本篇内容)
拉取完后记得-it/-itd
启动镜像,
docker run -itd --name Velox ghcr.io/facebookincubator/velox-dev:ubuntu-22.04 /bin/bash
然后VScode Dev Container进去,就像下面这张图
切换到根目录删除根目录下的/velox
,重新Git Clone份最新的(Velox项目每天都有更新,变化很大)
rm /velox
git clone https://github.com/facebookincubator/velox
直接make会报错,需要事先安装pkg-config
(如果make
报错再安装也不迟)
apt insatll pkg-config
cd /velox
make
大约有1200多项需要编译(内存最高占用到18GB,开8个线程需要编译快1个小时)
测试Demo的可执行文件在_build/release/velox/exec/tests/velox_in_10_min_demo
Velox In 10 minutes
https://facebookincubator.github.io/velox/velox-in-10-min.html
如果要新增/修改CPP文件,直接make即可
在velox/exec/tests/VeloxIn10MinDemo.cpp
中的VeloxIn10MinDemo::run()
中可以见到演示代码
在启动演示代码之前,VeloxIn10MinDemo
这个类用于初始化,关键字有PrestoSQL,DuckDB,TPC-H,还提供了parseExpression
,compileExpression
,makeTpchSplit
等函数:
class VeloxIn10MinDemo : public VectorTestBase {
public:
const std::string kTpchConnectorId = "test-tpch";
VeloxIn10MinDemo() {
// Register Presto scalar functions.
functions::prestosql::registerAllScalarFunctions();
// Register Presto aggregate functions.
aggregate::prestosql::registerAllAggregateFunctions();
// Register type resolver with DuckDB SQL parser.
parse::registerTypeResolver();
// Register TPC-H connector.
auto tpchConnector =
connector::getConnectorFactory(
connector::tpch::TpchConnectorFactory::kTpchConnectorName)
->newConnector(
kTpchConnectorId, std::make_shared<core::MemConfig>());
connector::registerConnector(tpchConnector);
}
~VeloxIn10MinDemo() {
connector::unregisterConnector(kTpchConnectorId);
}
教程写着:虽然Velox不提供SQL Parser,但测试环境提供DuckDB的SQL Parser作为参考
奇怪的是,如果我单独保留vectors
章节的代码,程序编译就会报错
TypeResolver.cpp:(.text+0x4d): undefined reference to `facebook::velox::core::Expressions::resolverHook_'
代码运行记录
data->toString(1, 5)
输出1到4行,不填输出列属性
std::cout << data->toString(1, 5) << std::endl;
compileExpression
函数如下图所示,似乎依赖PrestoSQL
?
std::unique_ptr<exec::ExprSet> compileExpression(
const std::string& expr,
const RowTypePtr& rowType) {
std::vector<core::TypedExprPtr> expressions = {
parseExpression(expr, rowType)};
return std::make_unique<exec::ExprSet>(
std::move(expressions), execCtx_.get());
}
auto exprSet = compileExpression("a + b", asRowType(data->type()));
compileExpression
函数会生成AST树,而经过evaluate
才会转为执行结果
VectorPtr evaluate(exec::ExprSet& exprSet, const RowVectorPtr& input) {
exec::EvalCtx context(execCtx_.get(), &exprSet, input.get());
SelectivityVector rows(input->size());
std::vector<VectorPtr> result(1);
exprSet.eval(rows, context, result);
return result[0];
}
auto c = evaluate(*exprSet, data);
auto abc = makeRowVector({"a", "b", "c"}, {a, b, c});
std::cout << std::endl << "> a, b, a + b: " << abc->toString() << std::endl;
std::cout << abc->toString(0, c->size()) << std::endl;
有了PlanBuilder()
就可以实现Aggregations
,Sorting
,Filtering
,Joins
这些操作,甚至支持与TPC-H
的Connector(“TPC-H connector generates TPC-H tables on the fly”)
plan = PlanBuilder()
.tpchTableScan(
tpch::Table::TBL_NATION,
{"n_nationkey", "n_name"},
1 /*scaleFactor*/)
.planNode();
auto nations = AssertQueryBuilder(plan).split(makeTpchSplit()).copyResults(pool());
std::cout << std::endl
<< "> first 10 rows from TPC-H nation table: "
<< nations->toString() << std::endl;
std::cout << nations->toString(0, 10) << std::endl;
结语
感觉Velox in 10 minutes更多的是提起人们对Velox的兴趣,而非展示Velox的执行细节(这部分内容需要Debug去寻找)